

RESOLVER

inova8

7/1/2012 Technical Documentation

A detailed description of the algorithms and analysis used within

the Resolver data reconciliation engine.

inova8

Resolver Page 1

Resolver
A D E T A I L E D D E S C R I P T I O N O F T H E A L G O R I T H M S A N D A N A L Y S I S U S E D
W I T H I N T H E R E S O L V E R R E C O N C I L I A T I O N E N G I N E

Contents

THE DATA RECONCILIATION PROBLEM .. 2

Objective Function .. 2

Constraints .. 2

Lagrangian .. 3

Kalman Formulation.. 4

Active Set Inequality Constraints ... 5

SOLUTION ALGORITHM .. 6

Efficient and Stable Kalman Updating Algorithm .. 6

Observation Model ... 6

Kalman Equations for covariance update ... 6

Efficient Kalman Equations but with numerical stability (UDU Factorization) 6

U-D Factorization ... 6

Constraint Sorting and Convergence Control.. 7

Constraint Sorting By Category .. 7

Constraint Sorting By Complexity .. 7

Program Variable Mapping .. 8

ERROR DIAGNOSIS MEASURES ... 9

Gross Error Detection ... 9

Measurement Error Detection ... 9

Constraint Error Detection ... 9

Solution Sensitivity ... 10

Estimate Sensitivity ... 10

Constraint Sensitivity .. 10

APPENDIX: LAGRANGIAN FORMULATION .. 12

APPENDIX: MATRIX INVERSION LEMMA .. 14

REFERENCES .. 15

inova8

Resolver Page 2

THE DATA RECONCILIATION PROBLEM
The objective of data reconciliation is to produce an estimate of the variables such that all constraints are met

and the estimates are ‘close’ to the provided measurements.

Typical constraints are that the total material mass flow in and out of a node within a flowsheet must be zero,

since mass cannot be created or destroyed.

Objective Function

‘Closeness’ of the estimates to the provided measurements has a variety of interpretations. The one most

widely adopted is based on the assumption that the measurements differ from the ‘true’ value of the variable

by a normally distributed random error. It can thus be shown, under these assumptions, that the ‘best’

estimates are found when the following objective function is minimized:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽 = ∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑞𝑖

𝑛

𝑖=1

Where

i is an index to the measurement or variable of the problem

xi is the estimate that is sought for the i-th variable

yi is the measurement of the i-th variable

qi is the variance (sometimes called the tolerance) of the measurement error of the i-th

variable.

However we need to consider the case when the estimates are cross-correlated. This is not usually the case

with ‘raw’ measurements, however as we progress through the solution we will see that the estimates are

indeed correlated. Thus let’s use a matrix notation:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽 = (𝒙 − 𝒚)𝑇. 𝑄−1. (𝒙 − 𝒚)

Where

x is the vector of i estimates of the variables

y is the vector of i measurements of the variables

Q is the covariance matrix.

Constraints

The constraints that typically arise when formulating data reconciliation problems are of the form:

A linear equality constraint: x1 + x2 – x3 = 0,

A nonlinear equality constraint: x1*x4 – x5*x6 = x7

A linear inequality constraint: x1 + x2 – x3 > 0

A nonlinear inequality constraint: x1*x4 – x5*x6 <= x7

For now we will ignore the inequality constraints, because as we will see later these become equality

constraints under certain circumstances.

inova8

Resolver Page 3

Thus we can write these constraints in the vector form, where g is a vector function:

𝒈(𝒙) = 𝟎

Lagrangian

We can now formulate the data reconciliation problem (see Appendix: Lagrangian Formulation):

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛, 𝐿 = (𝒙 − 𝒚)𝑇𝑄−1(𝒙 − 𝒚) + 𝒍 𝑇𝒈(𝒙)

If we minimize the Lagrangian L with-respect-to the estimates x, then we will have also met the constraints.

Before doing so it makes sense to use the Taylor series expansion of the constraint function g(x):

𝒈(𝒙) = 𝒈𝟎 +
𝜕𝒈(𝒙)

𝜕𝒙
 . 𝒙 + 𝒙𝑻.

𝜕2𝒈(𝒙)

𝜕𝒙𝟐
. 𝒙 + ⋯

We will be using this expansion frequently so let’s rewrite it as:

𝒈(𝒙) ≅ 𝒈𝟎 + 𝐴 . 𝒙

Thus differentiating the Lagrangian L with respect t x, and l we have these two equations:

𝜕𝐿

𝜕𝒙
= 2 . 𝑄−1. (𝒙 − 𝒚) + 𝐴𝑇. 𝒍 = 𝟎

𝜕𝐿

𝜕𝒍
= 𝐴. 𝒙 = −𝒈𝟎

These can be rewritten in the familiar form as:

[2. 𝑄−1 𝐴𝑇

𝐴 0
] . [

𝒙
𝒍

] = [
2. 𝑄−1. 𝒚

−𝒈𝟎
]

The solution for x and l can then be expressed as:

[
𝒙
𝒍

] = [2. 𝑄−1 𝐴𝑇

𝐴 0
]

−𝟏

[
2. 𝑄−1. 𝒚

−𝒈𝟎
]

Using the Matrix Inversion Lemma we can rewrite the right-hand-side as:

[
𝒙
𝒍

] = [

𝑄

2
(𝐼 − 𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴𝑄) 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1

(𝐴𝑄𝐴𝑇)−1𝐴𝑄 −2(𝐴𝑄𝐴𝑇)−1
] [

2. 𝑄−1. 𝒚
−𝒈𝟎

]

We can then multiply out the right-hand-side, and with a bit of rearrangement we get:

inova8

Resolver Page 4

[
𝒙
𝒍

] = [
𝑄(𝐼 − 𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴𝑄)𝑄−1. 𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1. 𝒈𝟎

2(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)
]

[
𝒙
𝒍

] = [
𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)

2(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)
]

Kalman Formulation

Kalman recognized the iterative formulation of this equation, if one assumes that y is the ‘initial’ estimate, and

x becomes the updated estimate. However since we have introduced a recursive formulation, let’s also change

the notation:

 Let the initial estimate y be renamed xn-1, then the updated estimate becomes xn

 Let the initial estimate of the covariance be Qn-1

 Let the constant part g0 of the Taylor expansion of the constraint vector function be g0(xn-1)

highlighting that it is the constant part of Taylor series expansion based on the best prior estimate xn-1

of the function

Thus the covariance update equation becomes:

𝑄𝑛 = 𝑄𝑛−1(𝐼 − 𝐴𝑇(𝐴𝑄𝑛−1𝐴𝑇)−1𝐴𝑄𝑛−1)

And the estimate update equation becomes:

𝒙𝒏 = 𝒙𝒏−𝟏 − 𝑄𝑛−1𝐴𝑇(𝐴𝑄𝑛−1𝐴𝑇)−1(𝐴. 𝒙𝒏−𝟏 + 𝒈𝟎(𝒙𝒏−𝟏))

To make this equation easier to manage we can introduce some terms:

Alpha:

𝛼 = 𝐴𝑄𝑛−1𝐴𝑇 + 𝜌

Kalman gain:

𝒌 = 𝑄𝑛−1𝐴𝑇𝛼−1

Update covariance:

Convergence Control

Note that 𝜌 originates from the full Kalman filter and corresponds to a measure of the process noise. In

the case of linear equality and inequality constraints 𝜌 is set to 0.0 and convergence will be the same as

Newtonian descent, alternatively known as quadratic convergence. However in the case of nonlinear

constraints 𝜌 can be used to control the rate of descent. If 𝜌 is zero descent proceeds at a Newtonian

pace, attempting to jump directly to the minimum. As 𝜌 increases, the descent rotates to the steepest

descent direction, and the step size becomes smaller. It has been shown that this guarantees convergence,

albeit at an infinitesimally slow pace.

inova8

Resolver Page 5

𝑄𝑛 = 𝑄𝑛−1 − 𝒌. 𝐴𝑇𝑄𝑛−1

Innovation:

𝜺 = 𝒈𝟎 + 𝐴. 𝒙𝒏−𝟏

Estimate update:

𝒙𝒏 = 𝒙𝒏−𝟏 − 𝒌. 𝜺

The above then becomes the well known Kalman updating algorithm, but modified for the data reconciliation

problem.

Active Set Inequality Constraints

Throughout the above problem formulation we have ignored the inequality constraints. Although there are a

variety of techniques to handle inequality constraints, the Active Set approach is best aligned with the

recursive constraint approach of Resolver.

The Active Set algorithm works as follows:

1. Evaluate each inequality constraints to see if any are ‘active’.

2. Determine which of the active inequality constraint is the ‘most’ violated (most active).

3. Apply this most active inequality constraint to the solution thus updating the estimates.

4. The process steps 1-3 are repeated until there are no further inequality constraints that are active.

Once an active constraint is identified, it is no longer an ‘inequality’ constraint, but an equality constraint:

C(xn) >0 added to the set of active constraints, thus treated as C(xn) =0

Thus there needs to be a way to identify the ‘most active’ constraint. That constraint is the one that is the

greatest distance from the current.

The measure used is as follows, where i is the i-th inactive inequality.

𝒌𝒊 =
𝜺 𝒊
𝛼𝑖

The most active constraint is the one with the greatest k value.

inova8

Resolver Page 6

SOLUTION ALGORITHM

Efficient and Stable Kalman Updating Algorithm

Despite its simplicity and elegance, the Kalman formulation has significant numerical stability problems that

were studied extensively in the 1970’s and 1980’s, particularly by Bierman in his paper ‘Filtering and Error

Analysis via the UDUT covariance factorization’.1 The algorithm as implemented in Resolver is documented

below:

Observation Model

Definition of the model used as the basis of the UDUT algorithm that follows.

Variable(n,s) = Expected[Variable(s)]

Innovation(n) = -Constraint(n, Variable(n, s))

or

Innovation(n) = Measurement(n) - MeasurementEquation(n,Variable(n,s))

r(n) = Expected[Innovation(n)**2]

Kalman Equations for covariance update

Conventional Kalman updating algorithm

Gradient(n,j) = Derivative[Innovation(n) wrt Variable(j)]

InnovationCovariance(n) = Gradient(n, i) * P(n, i, j) * Gradient(n, j) + r(n)

KalmanGain(n, j) = P(n, j, i) * Gradient(n, i) / InnovationCovariance(n)

P(n + 1, i, j) = P(n, i, j) - KalmanGain(n, i) * Gradient(n, k) * P(n, k, j)

Variable(n + 1, j) = Variable(n, j) + KalmanGain(n, j) * Innovation(n)

Efficient Kalman Equations but with numerical stability (UDU Factorization)

Efficient and stable Kalman updating algorithm.

NormalizedKalmanGain(n, j) = P(n, j, i) * Gradient(n, i)

InnovationCovariance(n) = Gradient(n, i) * NormalizedKalmanGain(n, i) + r(n)

KalmanGain(n, j) = NormalizedKalmanGain(n, j) / InnovationCovariance(n)

P(n + 1, i, j) = P(n, i, j) - KalmanGain(n, i) * NormalizedKalmanGain(n, j)

Variable(n + 1, j) = Variable(n, j) + KalmanGain(n, j) * Innovation(n)

U-D Factorization

U-D factorization converts the covariance matrix P into the product of an upper diagonal U, and diagonal

matrix D as P = U.D.UT. This results in much greater stability and a reduction in calculations.

Transformation P(n,i,j)-> U(n,i,k) * D(n,k) * U(n,j,k)

inova8

Resolver Page 7

F(n, j) = U(n, i, j) * Gradient(n, i)

B(n, j) = D(n, j) * F(n, j)

Alpha(0) = r(n)

Iterate j = 1, Number[Variable(s)]

Alpha(j) = Alpha(j-1) + F(n,j) * B(n,j)

D(n+1,j) = (Alpha(j-1) / Alpha(j)) * D(n,j)

NormalizedKalmanGain(n,j) = B(n,j)

Lambda = - F(n,j) / Alpha(j-1)

Iterate i = 1, j-1

U(n+1,i,j) = U(n,i,j) + NormalizedKalmanGain(n,i) * Lambda

NormalizedKalmanGain(n,i)= NormalizedKalmanGain(n,i) +

U(n,i,j)*NormalizedKalmanGain(n,j)

Next i

Next j

Variable(n + 1, j) = Variable(n, j) + KalmanGain(n, j) * Innovation(n)

Constraint Sorting and Convergence Control

In theory the Resolver algorithm can iterate through all of the constraints in any order. However accelerated

convergence is achieved when the constraints are sorted and applied as follows:

Constraint Sorting By Category

Initialize estimate to measurements

Repeat

Initialize covariance to measurement tolerance

Apply all linear equality constraints

Apply all nonlinear equality constraints

Iterate

Most active linear or nonlinear inequality constraint

Until no further active inequality constraints

Retain estimate

Until converged

Constraint Sorting By Complexity

Furthermore it is even possible to sort the constraints according to the ‘complexity’ of the constraint. There is no

universal definition of complexity; however the measure used in Resolver is the number of nonlinear operators

plus the number of variables. It has been found that convergence is improved if constraints are applied in

decreasing order of complexity.

Convergence Control

inova8

Resolver Page 8

In the calculation of 𝛼 a term 𝜌 was introduced as follows:

𝛼 = 𝐴𝑄𝑛−1𝐴𝑇 + 𝜌

𝜌 originates from the full Kalman filter and corresponds to a measure of the process noise. In the case of

linear equality and inequality constraints 𝜌 is set to 0.0 and convergence will be the same as Newtonian

descent, alternatively known as quadratic convergence. However in the case of nonlinear constraints 𝜌 can be

used to control the rate of descent. If 𝜌 is zero descent proceeds at a Newtonian pace, attempting to jump

directly to the minimum. As 𝜌 increases, the descent rotates to the steepest descent direction, and the step size

becomes smaller. It has been shown that this guarantees convergence, albeit at an infinitesimally slow pace.

Thus convergence can be controlled by adjusting 𝜌.

Program Variable Mapping

The program variables are mapped to the problem formulation as follows:

Name Program variable Formula

Covariance dUT Q

Estimates Results x

Kalman Gain dCp QAT

inova8

Resolver Page 9

ERROR DIAGNOSIS MEASURES

Gross Error Detection

The Global (or Gross) Error detection is a single metric whose role is to indicate if the overall problem has

errors that are invalidating the original assumption that:

 All measurements are approximately correct

 All constraints are accurately defined.

The global critical value is calculated as follows:

Global Critical Value = 𝐼𝑛𝑣 − 𝜒2(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑑𝑒𝑔𝑟𝑒)

Where

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95

Redundancy degree is the number of measurements which have more than one way of estimation.

(????)

Measurement Error Detection

The measurement critical value is used as a threshold value. If any measurement differs by more than this

amount then the measurement error is unlikely to be explained by random errors alone. As an example, if this

were to arise in a material balance problem then it is possible that the measurement was recorded incorrectly

oir there is a significant calibration error.

The measurement critical value is calculated as follows:

𝛽 = (1 − (1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
1
𝑛)

Measurement Critical Value = 𝐸𝑟𝑓(1 −
𝛽

2
)

Where

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95

n is the number of distinct measurements

Constraint Error Detection

The constraint critical value is used as a threshold value. If any constraint, when evaluated using the initial

measurements, differs by more than this amount then the constraint error is unlikely to be explained by

random errors alone. As an example, if this were to arise in a material balance problem then it is possible

that there are additional material flows.

The constraint critical value is calculated as follows:

𝛽 = (1 − (1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
1
𝑛)

inova8

Resolver Page 10

Measurement Critical Value = 𝐸𝑟𝑓(1 −
𝛽

2
)

Where

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95

n is the number of distinct constraints

Solution Sensitivity

Another aspect of any solution that is helpful in diagnosis is the sensitivity of the results with respect to the

measurements. There are two variants of sensitivity:

 How much influence does a measurement have on an estimate?

 How much influence does a measurement have on a constraint?

Estimate Sensitivity

The solution at convergence can be written as

𝒙 = 𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)

The sensitivity of the estimates, x, with respect to the measurements, y can be expressed as:

𝜕𝒙

𝜕𝒚
= 𝐼 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴

However the updated covariance is given as follows:

𝑄𝑛 = 𝑄0 − 𝑄0𝐴𝑇(𝐴 𝑄0𝐴𝑇)−1𝐴 𝑄0

Thus post-multiplying by 𝑄0 we get the required expression for the sensitivity:

𝑄𝑛𝑄0
−1 = 𝐼 − 𝑄0𝐴𝑇(𝐴 𝑄0𝐴𝑇)−1𝐴 =

𝜕𝒙

𝜕𝒚

Or more succinctly:

𝜕𝒙

𝜕𝒚
= 𝑄𝑛𝑄0

−1

In words, the sensitivity is the estimated covariance normalized by the initial covariance.

Constraint Sensitivity

The constraints in the linear case are written as

𝒈(𝒙) ≅ 𝐴𝒙 = 0

Thus the sensitivity of the constraints with respect to the measurements, y, is:

inova8

Resolver Page 11

𝜕

𝜕𝒚
𝒈(𝒙) ≅

𝜕

𝜕𝒚
𝐴𝒙 = 𝐴

𝜕𝒙

𝜕𝒚

Since the sensitivity of the estimate with respect to the measurement has already been evaluated we can write

this as:

𝜕

𝜕𝒚
𝑔(𝒙) = 𝐴 𝑄𝑛𝑄0

−1

inova8

Resolver Page 12

APPENDIX: LAGRANGIAN FORMULATION

Consider the two-dimensional problem introduced above:

maximize

subject to

We can visualize contours of f given by

for various values of , and the contour of given by .

Suppose we walk along the contour line with . In general the contour lines of and may be distinct,

so following the contour line for one could intersect with or cross the contour lines of . This is

equivalent to saying that while moving along the contour line for the value of can vary. Only when

the contour line for meets contour lines of tangentially, do we not increase or decrease the value

of - that is, when the contour lines touch but do not cross.

FIGURE 1: FIND X AND Y TO MAXIMIZE F(X,Y) SUBJECT TO A CONSTRAINT (SHOWN IN RED) G(X,Y)=C.

The contour lines of f and g touch when the tangent vectors of the contour lines are parallel. Since

the gradient of a function is perpendicular to the contour lines, this is the same as saying that the gradients

of f and g are parallel.

Thus we want points where and

,

http://en.wikipedia.org/wiki/Contour_line
http://en.wikipedia.org/wiki/Contact_(mathematics)
http://en.wikipedia.org/wiki/Differential_geometry_of_curves#Tangent_vector
http://en.wikipedia.org/wiki/Gradient

inova8

Resolver Page 13

where

and

are the respective gradients. The constant is required because although the two gradient vectors are

parallel, the magnitudes of the gradient vectors are generally not equal.

To incorporate these conditions into one equation, we introduce an auxiliary function

and solve

This is the method of Lagrange multipliers. Note that implies .

inova8

Resolver Page 14

APPENDIX: MATRIX INVERSION LEMMA
The Matrix Inversion Lemma is one of those handy rewrites of a matrix. Believe it or not the right-hand-side

below is often easier to handle than the left-hand-side. This occurs particularly when W is a vector.

[𝑋 𝑊𝑇

𝑊 0
]

−1

= [
𝑋−1(𝐼 − 𝑊𝑇(𝑊𝑋−1𝑊𝑇)−1𝑊𝑋−1 𝑋−1𝑊𝑇(𝑊𝑋−1𝑊𝑇)−1

(𝑊𝑋−1𝑊𝑇)−1𝑊𝑋−1 −(𝑊𝑋−1𝑊𝑇)−1]

A slightly more general version is:

[
𝑋 𝑌
𝑊 0

]
−1

= [
𝑋−1(𝐼 − 𝑌(𝑊𝑋−1𝑌)−1𝑊𝑋−1 𝑋−1𝑌(𝑊𝑋−1𝑌)−1

(𝑊𝑋−1𝑌)−1𝑊𝑋−1 −(𝑊𝑋−1𝑌)−1]

inova8

Resolver Page 15

REFERENCES

1 ‘Filtering and Error Analysis via the UDUT covariance factorization’, Thornton, C.L., and Bierman, G.J. IEEE
Trans AC-23, October 1978, pp901-907.

