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THE DATA RECONCILIATION PROBLEM 
The objective of data reconciliation is to produce an estimate of the variables such that all constraints are met 

and the estimates are ‘close’ to the provided measurements. 

Typical constraints are that the total material mass flow in and out of a node within a flowsheet must be zero, 

since mass cannot be created or destroyed. 

Objective Function 

‘Closeness’ of the estimates to the provided measurements has a variety of interpretations. The one most 

widely adopted is based on the assumption that the measurements differ from the ‘true’ value of the variable 

by a normally distributed random error. It can thus be shown, under these assumptions, that the ‘best’ 

estimates are found when the following objective function is minimized: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝐽 =  ∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑞𝑖

𝑛

𝑖=1

 

Where  

i is an index to the measurement or variable of the problem 

xi is the estimate that is sought for the i-th variable 

yi is the measurement of the i-th variable 

qi is the variance (sometimes called the tolerance) of the measurement error of the i-th 

variable. 

 

However we need to consider the case when the estimates are cross-correlated. This is not usually the case 

with ‘raw’ measurements, however as we progress through the solution we will see that the estimates are 

indeed correlated. Thus let’s use a matrix notation: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝐽 =  (𝒙 − 𝒚)𝑇. 𝑄−1. (𝒙 − 𝒚) 

 

Where  

x is the vector of i estimates of the variables 

y is the vector of i measurements of the variables  

Q is the covariance matrix. 

Constraints 

The constraints that typically arise when formulating data reconciliation problems are of the form: 

A linear equality constraint:   x1 + x2 – x3 = 0,  

A nonlinear equality constraint:  x1*x4 – x5*x6 = x7 

A linear inequality constraint:  x1 + x2 – x3 > 0 

A nonlinear inequality constraint:  x1*x4 – x5*x6 <= x7 

 

For now we will ignore the inequality constraints, because as we will see later these become equality 

constraints under certain circumstances. 
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Thus we can write these constraints in the vector form, where g is a vector function: 

 

𝒈(𝒙) =  𝟎 

Lagrangian 

We can now formulate the data reconciliation problem (see Appendix: Lagrangian Formulation): 

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛, 𝐿 = (𝒙 − 𝒚)𝑇𝑄−1(𝒙 − 𝒚) + 𝒍 𝑇𝒈(𝒙) 

 

If we minimize the Lagrangian L  with-respect-to the estimates x, then we will have also met the constraints. 

Before doing so it makes sense to use the Taylor series expansion of the constraint function g(x): 

𝒈(𝒙) =  𝒈𝟎 + 
𝜕𝒈(𝒙)

𝜕𝒙
 . 𝒙 + 𝒙𝑻.

𝜕2𝒈(𝒙)

𝜕𝒙𝟐
. 𝒙 + ⋯ 

We will be using this expansion frequently so let’s rewrite it as: 

𝒈(𝒙) ≅  𝒈𝟎 +  𝐴 . 𝒙 

Thus differentiating the Lagrangian L with respect t x, and l we have these two equations: 

𝜕𝐿

𝜕𝒙
= 2 . 𝑄−1. (𝒙 − 𝒚) + 𝐴𝑇. 𝒍 = 𝟎 

𝜕𝐿

𝜕𝒍
=  𝐴. 𝒙 = −𝒈𝟎 

These can be rewritten in the familiar form as: 

[2. 𝑄−1 𝐴𝑇

𝐴 0
] . [

𝒙
𝒍

] =  [
2. 𝑄−1. 𝒚

−𝒈𝟎
] 

The solution for x and l can then be expressed as: 

[
𝒙
𝒍

] =  [2. 𝑄−1 𝐴𝑇

𝐴 0
]

−𝟏

[
2. 𝑄−1. 𝒚

−𝒈𝟎
] 

Using the Matrix Inversion Lemma we can rewrite the right-hand-side as: 

[
𝒙
𝒍

] =  [

𝑄

2
(𝐼 − 𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴𝑄) 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1

(𝐴𝑄𝐴𝑇)−1𝐴𝑄 −2(𝐴𝑄𝐴𝑇)−1
] [

2. 𝑄−1. 𝒚
−𝒈𝟎

] 

 

We can then multiply out the right-hand-side, and with a bit of rearrangement we get: 
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[
𝒙
𝒍

] =  [
𝑄(𝐼 − 𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴𝑄)𝑄−1. 𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1. 𝒈𝟎

2(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)
] 

[
𝒙
𝒍

] =  [
𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)

2(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎)
] 

Kalman Formulation 

Kalman recognized the iterative formulation of this equation, if one assumes that y is the ‘initial’ estimate, and 

x becomes the updated estimate. However since we have introduced a recursive formulation, let’s also change 

the notation: 

 Let the initial estimate y be renamed xn-1, then the updated estimate becomes xn 

 Let the initial estimate of the covariance be Qn-1 

 Let the constant part g0 of the Taylor expansion of the constraint vector function be g0(xn-1) 

highlighting that it is the constant part of Taylor series expansion based on the best prior estimate xn-1 

of the function  

Thus the covariance update equation becomes: 

𝑄𝑛 =  𝑄𝑛−1(𝐼 − 𝐴𝑇(𝐴𝑄𝑛−1𝐴𝑇)−1𝐴𝑄𝑛−1) 

And the estimate update equation becomes: 

𝒙𝒏 =  𝒙𝒏−𝟏 − 𝑄𝑛−1𝐴𝑇(𝐴𝑄𝑛−1𝐴𝑇)−1(𝐴. 𝒙𝒏−𝟏 + 𝒈𝟎(𝒙𝒏−𝟏)) 

To make this equation easier to manage we can introduce some terms: 

Alpha: 

𝛼 =  𝐴𝑄𝑛−1𝐴𝑇 + 𝜌 

 

Kalman gain: 

𝒌 =  𝑄𝑛−1𝐴𝑇𝛼−1 

Update covariance: 

Convergence Control 

Note that 𝜌 originates from the full Kalman filter and corresponds to a measure of the process noise. In 

the case of linear equality and inequality constraints 𝜌 is set to 0.0 and convergence will be the same as 

Newtonian descent, alternatively known as quadratic convergence. However in the case of nonlinear 

constraints 𝜌 can be used to control the rate of descent. If 𝜌 is zero descent proceeds at a Newtonian 

pace, attempting to jump directly to the minimum. As 𝜌 increases, the descent rotates to the steepest 

descent direction, and the step size becomes smaller. It has been shown that this guarantees convergence, 

albeit at an infinitesimally slow pace. 
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𝑄𝑛 =  𝑄𝑛−1 −  𝒌. 𝐴𝑇𝑄𝑛−1 

Innovation: 

𝜺 = 𝒈𝟎 +  𝐴. 𝒙𝒏−𝟏 

Estimate update: 

𝒙𝒏 = 𝒙𝒏−𝟏 −  𝒌. 𝜺 

The above then becomes the well known Kalman updating algorithm, but modified for the data reconciliation 

problem. 

Active Set Inequality Constraints 

Throughout the above problem formulation we have ignored the inequality constraints. Although there are a 

variety of techniques to handle inequality constraints, the Active Set approach is best aligned with the 

recursive constraint approach of Resolver.  

The Active Set algorithm works as follows: 

1. Evaluate each inequality constraints to see if any are ‘active’. 

2. Determine which of the active inequality constraint is the ‘most’ violated (most active).  

3. Apply this most active inequality constraint to the solution thus updating the estimates. 

4. The process steps 1-3 are repeated until there are no further inequality constraints that are active. 

Once an active constraint is identified, it is no longer an ‘inequality’ constraint, but an equality constraint: 

C(xn) >0 added to the set of active constraints, thus treated as C(xn) =0 

Thus there needs to be a way to identify the ‘most active’ constraint. That constraint is the one that is the 

greatest distance from the current. 

The measure used is as follows, where i is the i-th inactive inequality.  

𝒌𝒊 =  
𝜺 𝒊
𝛼𝑖

  

The most active constraint is the one with the greatest k value.  
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SOLUTION ALGORITHM 

Efficient and Stable Kalman Updating Algorithm 

Despite its simplicity and elegance, the Kalman formulation has significant numerical stability problems that 

were studied extensively in the 1970’s and 1980’s, particularly by Bierman in his paper ‘Filtering and Error 

Analysis via the UDUT covariance factorization’.1 The algorithm as implemented in Resolver is documented 

below: 

Observation Model 

Definition of the model used as the basis of the  UDUT algorithm that follows. 

Variable(n,s) = Expected[ Variable(s) ] 

Innovation(n) = -Constraint(n, Variable(n, s)) 

or   

Innovation(n) = Measurement(n) - MeasurementEquation(n,Variable(n,s)) 

r(n) = Expected[ Innovation(n)**2 ] 

Kalman Equations for covariance update 

Conventional Kalman updating algorithm 

Gradient(n,j)    = Derivative[ Innovation(n) wrt Variable(j) ] 

InnovationCovariance(n)  = Gradient(n, i) * P(n, i, j) * Gradient(n, j) + r(n) 

KalmanGain(n, j)  = P(n, j, i) * Gradient(n, i) / InnovationCovariance(n) 

P(n + 1, i, j)  = P(n, i, j) - KalmanGain(n, i) * Gradient(n, k) * P(n, k, j) 

Variable(n + 1, j)  = Variable(n, j) + KalmanGain(n, j) * Innovation(n) 

Efficient Kalman Equations but with numerical stability (UDU Factorization)  

Efficient and stable Kalman updating algorithm. 

NormalizedKalmanGain(n, j)  = P(n, j, i) * Gradient(n, i) 

InnovationCovariance(n)  = Gradient(n, i) * NormalizedKalmanGain(n, i) + r(n) 

KalmanGain(n, j)  = NormalizedKalmanGain(n, j) / InnovationCovariance(n) 

P(n + 1, i, j)  = P(n, i, j) - KalmanGain(n, i) * NormalizedKalmanGain(n, j) 

Variable(n + 1, j)  = Variable(n, j) + KalmanGain(n, j) * Innovation(n) 

U-D Factorization 

U-D factorization converts the covariance matrix P into the product of an upper diagonal U, and diagonal 

matrix D as P = U.D.UT. This results in much greater stability and a reduction in calculations.  

Transformation P(n,i,j)-> U(n,i,k) * D(n,k) * U(n,j,k) 
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F(n, j)  = U(n, i, j) * Gradient(n, i) 

B(n, j)  = D(n, j) * F(n, j) 

Alpha(0)  = r(n) 

Iterate j = 1, Number[ Variable(s) ] 

Alpha(j)           = Alpha(j-1) + F(n,j) * B(n,j) 

D(n+1,j)           = ( Alpha(j-1) / Alpha(j) ) * D(n,j) 

NormalizedKalmanGain(n,j) = B(n,j) 

Lambda              = - F(n,j) / Alpha(j-1) 

Iterate i = 1, j-1 

U(n+1,i,j) = U(n,i,j) + NormalizedKalmanGain(n,i) * Lambda 

NormalizedKalmanGain(n,i)= NormalizedKalmanGain(n,i) + 

U(n,i,j)*NormalizedKalmanGain(n,j) 

Next i 

Next j 

Variable(n + 1, j)  = Variable(n, j) + KalmanGain(n, j) * Innovation(n) 

Constraint Sorting and Convergence Control 

In theory the Resolver algorithm can iterate through all of the constraints in any order. However accelerated 

convergence is achieved when the constraints are sorted and applied as follows: 

Constraint Sorting By Category 

Initialize estimate to measurements 

Repeat 

Initialize covariance to measurement tolerance 

Apply all linear equality constraints 

Apply all nonlinear equality constraints 

Iterate 

Most active linear or nonlinear inequality constraint 

Until no further active inequality constraints 

Retain estimate  

Until converged 

Constraint Sorting By Complexity 

Furthermore it is even possible to sort the constraints according to the ‘complexity’ of the constraint. There is no 

universal definition of complexity; however the measure used in Resolver is the number of nonlinear operators 

plus the number of variables. It has been found that convergence is improved if constraints are applied in 

decreasing order of complexity.  

 

Convergence Control 
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In the calculation of 𝛼 a term 𝜌 was introduced as follows: 

𝛼 =  𝐴𝑄𝑛−1𝐴𝑇 + 𝜌 

𝜌 originates from the full Kalman filter and corresponds to a measure of the process noise. In the case of 

linear equality and inequality constraints 𝜌 is set to 0.0 and convergence will be the same as Newtonian 

descent, alternatively known as quadratic convergence. However in the case of nonlinear constraints 𝜌 can be 

used to control the rate of descent. If 𝜌 is zero descent proceeds at a Newtonian pace, attempting to jump 

directly to the minimum. As 𝜌 increases, the descent rotates to the steepest descent direction, and the step size 

becomes smaller. It has been shown that this guarantees convergence, albeit at an infinitesimally slow pace. 

Thus convergence can be controlled by adjusting 𝜌.  

Program Variable Mapping 

The program variables are mapped to the problem formulation as follows: 

Name Program variable Formula 

Covariance dUT Q 

Estimates Results x 

Kalman Gain dCp QAT 
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ERROR DIAGNOSIS MEASURES 

Gross Error Detection 

The Global (or Gross) Error detection is a single metric whose role is to indicate if the overall problem has 

errors that are invalidating the original assumption that: 

 All measurements are approximately correct 

 All constraints are accurately defined. 

The global critical value is calculated as follows: 

Global Critical Value = 𝐼𝑛𝑣 − 𝜒2(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑑𝑒𝑔𝑟𝑒) 

Where  

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95 

Redundancy degree is the number of measurements which have more than one way of estimation. 

(????) 

Measurement Error Detection 

The measurement critical value is used as a threshold value. If any measurement differs by more than this 

amount then the measurement error is unlikely to be explained by random errors alone. As an example, if this 

were to arise in a material balance problem then it is possible that the measurement was recorded incorrectly 

oir there is a significant calibration error. 

The measurement critical value is calculated as follows: 

𝛽 = (1 − (1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
1
𝑛) 

Measurement Critical Value = 𝐸𝑟𝑓(1 −
𝛽

2
) 

Where  

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95 

n is the number of distinct measurements 

Constraint Error Detection 

The constraint critical value is used as a threshold value. If any constraint, when evaluated using the initial 

measurements, differs by more than this amount then the constraint error is unlikely to be explained by 

random errors alone. As an example, if this were to arise in a material balance problem then it is possible 

that there are additional material flows. 

The constraint critical value is calculated as follows: 

𝛽 = (1 − (1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)
1
𝑛) 
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Measurement Critical Value = 𝐸𝑟𝑓(1 −
𝛽

2
) 

Where  

Confidence is the confidence level used when assigning tolerances, such as 95% or 0.95 

n is the number of distinct constraints 

Solution Sensitivity 

Another aspect of any solution that is helpful in diagnosis is the sensitivity of the results with respect to the 

measurements. There are two variants of sensitivity: 

 How much influence does a measurement have on an estimate? 

 How much influence does a measurement have on a constraint?  

Estimate Sensitivity 

The solution at convergence can be written as  

𝒙 =  𝒚 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1(𝐴. 𝒚 + 𝒈𝟎) 

The sensitivity of the estimates, x, with respect to the measurements, y can be expressed as: 

  
𝜕𝒙

𝜕𝒚
=  𝐼 − 𝑄𝐴𝑇(𝐴𝑄𝐴𝑇)−1𝐴 

However the updated covariance is given as follows: 

𝑄𝑛 =  𝑄0 −  𝑄0𝐴𝑇(𝐴 𝑄0𝐴𝑇)−1𝐴 𝑄0 

Thus post-multiplying by  𝑄0 we get the required expression for the sensitivity: 

𝑄𝑛𝑄0
−1 = 𝐼 −  𝑄0𝐴𝑇(𝐴 𝑄0𝐴𝑇)−1𝐴 =  

𝜕𝒙

𝜕𝒚
 

Or more succinctly: 

𝜕𝒙

𝜕𝒚
= 𝑄𝑛𝑄0

−1  

In words, the sensitivity is the estimated covariance normalized by the initial covariance. 

Constraint Sensitivity 

The constraints in the linear case are written as  

𝒈(𝒙) ≅ 𝐴𝒙 =  0 

Thus the sensitivity of the constraints with respect to the measurements, y, is: 
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𝜕

𝜕𝒚
𝒈(𝒙) ≅

𝜕

𝜕𝒚
𝐴𝒙 =  𝐴 

𝜕𝒙

𝜕𝒚
 

Since the sensitivity of the estimate with respect to the measurement has already been evaluated we can write 

this as: 

𝜕

𝜕𝒚
𝑔(𝒙) =  𝐴 𝑄𝑛𝑄0

−1 
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APPENDIX: LAGRANGIAN FORMULATION 

Consider the two-dimensional problem introduced above: 

maximize  

subject to  

We can visualize contours of f given by 

 

for various values of , and the contour of  given by . 

Suppose we walk along the contour line with . In general the contour lines of  and  may be distinct, 

so following the contour line for  one could intersect with or cross the contour lines of . This is 

equivalent to saying that while moving along the contour line for  the value of  can vary. Only when 

the contour line for  meets contour lines of  tangentially, do we not increase or decrease the value 

of  - that is, when the contour lines touch but do not cross.  

 
FIGURE 1: FIND X AND Y TO MAXIMIZE F(X,Y) SUBJECT TO A CONSTRAINT (SHOWN IN RED) G(X,Y)=C. 

The contour lines of f and g touch when the tangent vectors of the contour lines are parallel. Since 

the gradient of a function is perpendicular to the contour lines, this is the same as saying that the gradients 

of f and g are parallel.  

Thus we want points  where  and 

, 

http://en.wikipedia.org/wiki/Contour_line
http://en.wikipedia.org/wiki/Contact_(mathematics)
http://en.wikipedia.org/wiki/Differential_geometry_of_curves#Tangent_vector
http://en.wikipedia.org/wiki/Gradient
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where 

 

and 

 

are the respective gradients. The constant  is required because although the two gradient vectors are 

parallel, the magnitudes of the gradient vectors are generally not equal. 

To incorporate these conditions into one equation, we introduce an auxiliary function 

 

and solve 

 

This is the method of Lagrange multipliers. Note that  implies . 
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APPENDIX: MATRIX INVERSION LEMMA 
The Matrix Inversion Lemma is one of those handy rewrites of a matrix. Believe it or not the right-hand-side 

below is often easier to handle than the left-hand-side. This occurs particularly when W is a vector.   

[ 𝑋 𝑊𝑇

𝑊 0
]

−1

= [
𝑋−1(𝐼 − 𝑊𝑇(𝑊𝑋−1𝑊𝑇)−1𝑊𝑋−1 𝑋−1𝑊𝑇(𝑊𝑋−1𝑊𝑇)−1

(𝑊𝑋−1𝑊𝑇)−1𝑊𝑋−1 −(𝑊𝑋−1𝑊𝑇)−1 ] 

A slightly more general version is: 

[
𝑋 𝑌
𝑊 0

]
−1

= [
𝑋−1(𝐼 − 𝑌(𝑊𝑋−1𝑌)−1𝑊𝑋−1 𝑋−1𝑌(𝑊𝑋−1𝑌)−1

(𝑊𝑋−1𝑌)−1𝑊𝑋−1 −(𝑊𝑋−1𝑌)−1 ] 
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