

SKOS TO PROV
VIA OWL

inova8

3/29/2017
Combining SKOS models with RDFS within
a PROV-like upper ontology

inova8

SKOS to PROV via OWL Page 1
Copyright 2016, inova8 llc

SKOS to PROV via OWL

Revision History:

Date Version Description Author

3/29/2017

1.0 Initial Document PJL

3/29/2017

2.0 Updated example queries PJL

© Copyright 2017, inova8 llc

CONFIDENTIAL

The information contained herein is confidential and proprietary to Inova8 llc. It may not be disclosed or

transferred, directly or indirectly, to any third party without the explicit written permission of Inova8 llc

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, translated,

or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without prior written permission of Inova8 llc.

inova8

SKOS to PROV via OWL Page 2
Copyright 2016, inova8 llc

SKOS to PROV via OWL

Table of Contents

SUMMARY ... 3

VEHICLE MANUFACTURING EXAMPLE .. 3

SKOS Modeling .. 3

Why? ... 4

SKOS+OWL Modeling ... 5

Why? ... 5

SKOS+OWL+PROV Modeling ... 6

Why? ... 7

SKOS+OWL+PROV-Qualified Modeling .. 7

Why? ... 9

FURTHER WORK .. 9

MODEL ... 9

REFERENCES .. 9

Figures
Figure 1: SKOS taxonomy ... 4
Figure 2: PROV model ... 6
Figure 3: Taxonomy extended with Qualified Actions .. 9

Tables
No table of figures entries found.

inova8

SKOS to PROV via OWL Page 3
Copyright 2016, inova8 llc

SUMMARY
SKOS, the Simple Knowledge Organization System, offers an easy to understand schema for vocabularies and
taxonomies. However modeling precision is lost when skos:semanticRelation predicates are introduced.

Combining SKOS with RDFS/OWL allows both the precision of owl:ObjectProperty to be combined with the
flexibility of SKOS. However clarity is then lost as the number of core concepts (aka owl:Class) grow.

Many models are not just documenting the ‘state’ of an entity. Instead they are often tracking the actions
performed on entities by agents at locations. Thus aligning the core concepts to the Activity, Entity, Agent, and
Location classes of the PROV ontology provides a generic upper-ontology within which to organize the model
details.

VEHICLE MANUFACTURING EXAMPLE
This examples captures information about vehicle manufacturing. Following

1. Manufacturers: the manufacturer of models of cars in various production lines sited at plants
2. Models: the models that the manufacturer produces
3. ProductionLines: the production lines set up to produce models of vehicles on behalf of a manufacturer
4. Plants: the plants that house the production lines

In addition there are different ‘styles’ of manufacturing that occur for various models and various sites:

5. Manufacturing: the use of a ProductionLine for a particular Model

SKOS Modeling

If we follow a pure SKOS model we proceed as follows by creating a VehicleManufacturingScheme
skos:ConceptScheme

s:VehicleManufacturingScheme

 rdf:type skos:ConceptScheme

.

Then we create skos:topConceptOf Manufacturer, Model, Plant, and Production as follows:

s:Manufacturer

 rdf:type owl:Class ;

 rdfs:subClassOf skos:Concept ;

 skos:topConceptOf s:VehicleManufacturingScheme

.

s:Model

 rdf:type owl:Class ;

 rdfs:subClassOf skos:Concept ;

 skos:topConceptOf s:VehicleManufacturingScheme

.

These top-level concepts are being created of type owl:Class and a subClassOf skos:Concept. This is the pattern
recommended in (Bechhofer, et al.)

Finally we can create skos:broader concepts as follows:

s:Ford

 rdf:type s:Manufacturer ;

inova8

SKOS to PROV via OWL Page 4
Copyright 2016, inova8 llc

 skos:broader s:Manufacturer ;

 skos:inScheme s:VehicleManufacturingScheme

.

s:Fusion

 rdf:type s:Model ;

 skos:broader s:Model ;

 skos:inScheme s:VehicleManufacturingScheme

.

The resultant SKOS taxonomy of the VehicleManufacturingScheme skos:ConceptScheme then appears as follows:

FIGURE 1: SKOS TAXONOMY

Why?

By starting with a pure SKOS model we provide access to the underling concepts in a more accessible style for the
less proficient user, as illustrated by the SKOS Taxonomy above. Yet we have not sacrificed the ontological
precision of owl:Classes.

Thus we can ask questions about all concepts:

SELECT * WHERE

{

 ?myConcepts rdfs:subClassOf+ skos:Concept .

}

Or we can get a list of anything broader than one of these concepts:

SELECT * WHERE

{

 ?myBroaderConcepts skos:broader s:Model .

inova8

SKOS to PROV via OWL Page 5
Copyright 2016, inova8 llc

}

SKOS+OWL Modeling

Although skos:semanticRelation allows one to link concepts together, this predicate is often too broad when trying
to create an ontology that documents specific relations between specific types of concept.

In our VehicleManufacturingScheme we might want to know the following:

1. isManufacturedBy: which manufacturer manufactures a particular model
2. operatedBy: which manufacturer operates a particular production facility
3. performedAt: which plant is the location of a production facility
4. wasManufacturedAt: which production facility was used to manufacture a particular model

FIGURE 2: SKOS+OWL MODEL OF RELATIONS

These predicates can be defined using RDFS as follows:

so:isManufacturerBy

 rdf:type owl:ObjectProperty ;

 rdfs:domain s:Model ;

 rdfs:range s:Manufacturer ;

 rdfs:subPropertyOf skos:semanticRelation

.

so:operatedBy

 rdf:type owl:ObjectProperty ;

 rdfs:domain s:Production ;

 rdfs:range s:Manufacturer ;

 rdfs:subPropertyOf skos:semanticRelation

.

Note that the definition of Model, Manufacturer etc. as subClassOf skos:Concept allows us to precisely define the
domain and range.

s:Fusion

 so:isManufacturerBy s:Ford ;

 so:wasManufacturedAt s:Halewood-SmallVehicle ;

.

s:Dagenham-Truck

 so:operatedBy s:Ford ;

 so:performedAt s:Dagenham ;

.

Thus we have used the flexibility of SKOS with the greater modeling precision of RDFS/OWL.

Why?

By building upon the SKOS model, one can ask an expansive question such as what concepts are semantically
related to, say, the concept s:Fusion with a simple query:

SELECT * WHERE

{

 s:Fusion ?p ?y .

 ?p rdfs:subPropertyOf* skos:semanticRelation

}

Manufacturer ModelisManufacturedBy

OWL

inova8

SKOS to PROV via OWL Page 6
Copyright 2016, inova8 llc

Yet with the same model we can ask a specific question about a relationship of a specific instance:

SELECT * WHERE

{

 s:Camry so:isManufacturerBy ?o .

}

SKOS+OWL+PROV Modeling

One of the attractions of SKOS is that a taxonomy can grow organically. One of the problems of SKOS is that a
taxonomy can grow organically!

As the taxonomy grows it can be useful to add another layer of structure beyond a catalog of concepts. Many
models are not just documenting the ‘state’ of an entity. Instead they are often tracking the actions performed on
entities by agents at locations. Thus aligning the core concepts to the Activity, Entity, Agent, and Location classes of
the PROV ontology (Lebo, et al.) provides a generic upper-ontology within which to organize the model details.

FIGURE 3: PROV MODEL

Thus our VehicleManufacturingScheme has each core PROV concept:

1. Manufacturers: the Agents who manufacture models, and operate plants
2. Models: the Entities
3. ProductionLines: the Activities that produce Models on behalf of Manufacturers.
4. Plants: the Location at which Activities take place, and Agents and Entities are located.

FIGURE 4: PROV MODEL

s:Production

 rdfs:subClassOf prov:Activity ;

Manufacturer ProductionoperatedBy ModelwasManufacturedAt

PROV isManufacturedBy

Plant

performedAt

inova8

SKOS to PROV via OWL Page 7
Copyright 2016, inova8 llc

.

s:Model

 rdfs:subClassOf prov:Entity ;

.

s:Manufacturer

 rdfs:subClassOf prov:Organization ;

.

s:Plant

 rdfs:subClassOf prov:Location ;

.

Similarly we can cast our predicates into the same PROV model as follows:

so:isManufacturerBy

 rdfs:subPropertyOf prov:wasAttributedTo ;

.

so:operatedBy

 rdfs:subPropertyOf prov:wasAssociatedWith ;

.

so:performedAt

 rdfs:subPropertyOf prov:atLocation ;

.

so:wasManufacturedAt

 rdfs:subPropertyOf prov:wasGeneratedBy ;

.

Why?

The PROV model is closer to the requirements of most enterprise models, that are trying to ‘model the business’,
than a simple E-R model. The latter concentrates on capturing the attributes of an entity that record the current
state of that entity. Often those attributes focus on documenting the process by which the entity gained its current
state:

 The agent that created the entity

 The activity used to create the entity

 The location when things were performed

 The data of the activity, etc
Superimposing the PROV model formalizes this model, and thus allows a structure within which a more casual user
can navigate, rather than a sea of entities.

By building upon the PROV model, one can ask an expansive question such as what entities behave as Agents and
in which entities are they involved:

SELECT * WHERE

{

?organization a ?Agent .

?Agent rdfs:subClassOf* prov:Agent .

?entity ?predicate ?organization

}

SKOS+OWL+PROV-Qualified Modeling

Within the structure of PROV, predicates define the relationships between Activities, Entities, Agents, and Locations.
However it is sometimes necessary to qualify these relationships.
For example, the so:wasManufacturedAt predicate defines that a s:Production facility was used to manufacture a
s:Model. When? How was it used? Why?meenu

inova8

SKOS to PROV via OWL Page 8
Copyright 2016, inova8 llc

To extend the model, PROV adds the concept of a qualified influence, which allows the relationship to be further
defined.

FIGURE 5: QUALIFIED PROV FOR SOME PREDICATES

We do this first of all by creating sopq:Manufacturing:

sopq:Manufacturing

 rdf:type owl:Class ;

 rdfs:subClassOf skos:Concept ;

 rdfs:subClassOf prov:Generation ;

 skos:topConceptOf s:VehicleManufacturingScheme ;

.

Note that this is a rdfs:subClassOf prov:Generation, the reification of the predicate prov:wasGeneratedBy

We then add two predicates, one (sopq:wasManufacturedUsing) from the prov:Entity to the prov:Generation, and
one (sopq:production) from the prov:Generation to the prov:Activity as follows:

sopq:wasManufacturedUsing

 rdf:type owl:ObjectProperty ;

 rdfs:domain s:Model ;

 rdfs:range sopq:Manufacturing ;

 rdfs:subPropertyOf skos:semanticRelation ;

 rdfs:subPropertyOf prov:qualifiedGeneration ;

.

sopq:production

 rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf skos:semanticRelation ;

 rdfs:subPropertyOf prov:activity ;

.

Finally we can create a Manufacturing qualified generation concept as follows:

sopq:L-450H_at_Swindon-Hybrid

 rdf:type sopq:Manufacturing ;

 sopq:production s:Swindon-Hybrid ;

 skos:broader sopq:Manufacturing ;

.

s:L-450H

 sopq:wasManufacturedUsing sopq:L-450H_at_Swindon-Hybrid ;

.

In the figure below we can see that these qualified actions simply extend the SKPOS taxonomy:

production Manufacturing wasManufacturedUsing

Qualified PROV

Manufacturer ProductionoperatedBy Model

isManufacturedBy

Plant

performedAt

inova8

SKOS to PROV via OWL Page 9
Copyright 2016, inova8 llc

FIGURE 6: TAXONOMY EXTENDED WITH QUALIFIED ACTIONS

Why?

Using qualifiedActions provides a systematic, rather than ad-hoc, way to provide more precision to a model.

FURTHER WORK

1. The PROV structure does not manifest itself within the taxonomy. Should Activity, Entity, Agent, and
Location therefore be ConceptSchemes?

MODEL

The model files used in this example are included here:

 skos.ttl

 skos+owl.ttl

 skos+owl+prov.ttl

 skos+owl+provqualified.ttl

REFERENCES
Bechhofer, Sean and Miles, Alistair. Using OWL and SKOS. [Online] W3C.
https://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html.
Lebo, Timothy, Satya, Sahoo and McGuinness, Deborah. PROV-O: The PROV Ontology. W3C. [Online]
https://www.w3.org/TR/prov-o/.

inova8

SKOS to PROV via OWL Page 10
Copyright 2016, inova8 llc

