Displacing problems: do information technology ‘solutions’ create more problems than they solve. Do information technology ‘solutions’ simply displace problems to another group? HAZOPS have been used to systematically assess risks in processes and operations. Why not ‘HAZOP’ the supposed information technology solutions we propose?

The information technology track record in process manufacturing

We and I speak for software and information technologists, have not always had a good record of solving the problems of the process manufacturing industry, instead we solve our own technical problems. Take for example the history of time series data management over the last 30 years:

  • You had a problem of instrument data, and we solved it with historians, but you came back and told us we were not listening because …
  • You had a problem with data visibility, and we solved it with portals, but you came back and told us we were not listening because …
  • You had a problem with analyzing what was going on, and we solved it with analysis servers, but you came back and told us we were not listening because …
  • You had a problem with deploying analysis, and we now solve it with plant models, but you come back and tell us we are not listening because …
  • You had a problem with following through on the results, and we now solve it with work-flow, but you come back and tell us we are not listening because …
  • You do not have an IT department nor the in-house skills to deploy such technology, perhaps we will solve that by moving in-house applications into the ‘cloud’, but what will you come back with to tell us we were not listening?

Perhaps the future problems will be that you do not really have the in-house skills to deploy applications in such a way as to gain their benefit. Thus we must think about solutions that are self-deployable, with built-in best practices. Apple iPad would not be very successful if along with the iPad you had to buy 2 days of consulting time to understand how to use the applications!

Another problem, if it can be called that, is that you will be employing GenY and GenX who are used to iPhone, Twitter, Facebook and other social applications. How will they respond to our applications that sometimes resemble work-overs of 1980’s mainframe applications?

The pace of change of the architecture, scope, and complexity of process manufacturing application solutions is far from slowing down. So if this thesis is correct, we might expect even bigger problems to be created by these supposed solutions. We need a strategy for anticipating those problems before they occur.

Avoiding future problems: Problem Displacement Assessment

So how do we avoid these mistakes in the future? This seems like an impossible goal, but in the event of a process incident there will be many who say that it should have been anticipated. And to respond to this the process industry has long used HAZOPS during the design or adaptation of critical processes and operations. A hazard and operability study (HAZOP) is a structured and systematic examination of a planned or existing process or operation in order to identify and evaluate problems that may represent risks to personnel or equipment, or prevent efficient operation. Why not apply the same structured examination directed towards the problems that we will create when we solve another problem. HAZOP pivots around examining Deviations from each intention, feasible Causes and likely Consequences. We can map deviations, causes and consequences to the impact of our ‘solutions’ as shown below:

HAZOP Problem Displacement Assessment
HAZOP Example PRODIS Example 1 Example 2
Asset Heat exchanger Application Excel Unit production report Database model-driven reporting system
Intention To heat 2.3 kg/s of 96% sulfuric acid from 20°C to 80 °C. Intention To provide report of balance of feed and productions, together with production qualities

(achieved using Excel with links to the data sources)

To provide report of balance of feed and productions, together with production qualities

(achieved using a database model to deduce the feeds and products streams and associated data sources)

Deviation MORE: 20°C to 100 °C. Deviation INACCURACY: regular imbalance of feed vs. products INACCURACY: regular imbalance of feed vs. products
Causes Reduced flow
Causes Excel macro mismatches actual material flows
Inaccurate mass flow measurements
Missing measurements
Model mismatches actual material flows
Inaccurate mass flow measurements
Missing measurements
Consequences Dangerously overheated sulfuric acid. Consequences Inability to understand the source of the errors, the confidence in the reports diminishes until it falls out of use. Requires new skills of DBA/analyst who can understand the underlying data structures needed to debug the problem. Since these skills are not available the confidence in the reports diminishes until it falls out of use.

 

So that is the proposal: whenever a new application is deployed or a significant adaptation is to be made to an existing application, let us undertake a systematic Problem Displacement Assessment using the same methodology as HAZOPS:

  • For each application,
    • For each intended behavior of that application,
      • For each possible deviation from the intended behavior,
        • Identify what might be the causes of the deviation,
          • Identify the consequences of the deviation.