Since IntelligentGraph combines Knowledge Graphs with embedded data analytics, Jupyter is an obvious choice as a data analysts’ IntelligentGraph workbench.

The following are screen-captures of a Jupyter-Notebook session showing how Jupyter can be used as an IDE for IntelligentGraph to perform all of the following:

  • Create a new IntelligentGraph repository
  • Add nodes to that repository
  • Add calculation nodes to the same repository
  • Navigate through the calculated results
  • Query the results using SPARQL

GettingStarted is available as a JupyterNotebook here:

GettingStartedIntelligentGraph.ipynb

This document is available for download here:

IntelligentGraph-Getting Started.pdf

 

 

SPARQLing

Using the Jupyter ISparql, we can easily perform SPARQL queries over the same IntelligentGraph created above. 

GettingStarted Using SPARQL

We do not have to use Java to script our interaction with the repository. We can always use SPARQL directly as described by the following Jupyter Notebook.

GettingStartedSPARQL.ipynb

 

2 thoughts on “Getting started with Jupyter+IntelligentGraph=Graph Data Analyst Workbench

Comments are closed.